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J. Phys. A: Math. Gen. 16 (1983) 1517-1521. Printed in Great Britain 

Equivalent Lagrangians in field theory? 

J Ronald Farias and N L Teixeira 
Departamento de Fisica, Universidade Federal da Paraiba, 58.000, Jolo Pessoa(PB), 
Brazil 

Received 19 May 1982 

Abstract. A theorem by Hojman and Harleston for multidimensional equivalent 
Lagrangians ( L  and E) in the realm of Newtonian mechanics is generalised to field theory. 
Equivalent Lagrangians for some set of field equations are found. 

1. Introduction 

Canonical quantisation is based on the existence of a Lagrangian function. If, given 
a set of dynamical equations, in correspondence we have two (or more) Lagrangian 
functions, the theory, in principle, can admit different quantisation procedures. This 
problem motivated a line of research (the search for equivalent Lagrangians) in the 
realm of classical mechanics (Okubo 1980 and references therein, Hojman and 
Harleston 1981). Two Lagrangians are said to be equivalent iff they lead non-trivially 
to the same equations. 

The mechanical counterpart for a classical discrete system is achieved if we consider 
the Lagrangian L = Liq', 4 ' ,  t )  that leads to the set of n Euler-Lagrange equations 

A set of equations equivalent to equation (1) may be constructed with the aid of a 
non-singular matrix Ak(q',  d i ,  t )  

provided Gi = A:Gk (the summation convention is used). If equations (1) and ( 2 )  are 
valid, we say that L and are equivalent. 

The natural generalisation of this problem in field theory is 

such that 
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where 

4c;F = a4 ' /aXw 
a , b , c = l , 2  , . . . ,  n 

4c;,v =a24'/axF ax" 

CY, p,  v = 0, 1 ,2 ,3 .  

2 and are said to be equivalent Lagrangian densities. 
Under the above conditions, it was proved by Hojman and Harleston (1981) that 

d(Ai)/dt = 0 i.e. d[Tr(A)]/dt = 0. 

This result was also derived by Henneaux (1981) and Lutzky (1982). 
Here, we generalise this theorem for fields of the type 

Fa =gLI"Aab(Xoo 4'9 4':a)4b'sv  +Ba(xu, 4'9 4 " m )  = O  (4) 

where goo = -gkk = 1, gFy = 0, p # U, k = 1, 2, 3; Aab =Aba, det(A) # 0. Most field 
theories are included in this category. 

In particular, we will prove the following theorem. 

Theorem. If 9 is equivalent to 22 then 

d(h,")/dx" = 0 

a = 1 , 2 , .  . . , n 
i.e. d[Tr(h)]/dx" = 0 

p =0, 1 ,2 ,3 .  

In order to derive this result we use Santilli's (1977) conditions. 

2. Santilli conditions 

Santilli conditions are necessary and sufficient conditions for a given set of field 
equations F a ( x " , ~ c , ~ c ~ , , ~ c ~ , p ) = O ,  a = 1 , 2  , . . . ,  n ; a , p = 0 , 1 , 2 , 3 ,  to be derived 
from Hamilton's variational principle. They are 

a , b = l , 2  , . . . ,  n /I, v = 0, 1 ,2 ,3 .  

It is known that the Euler-Lagrange equations for continuous systems are linear 
in the second-order partial derivatives q5c;,Y. This is seen immediately from equations 
(6a)  and (66). Hence, without loss of generality we can restrict ourselves to equations 
of the form 
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Using this result, the Santilli conditions are transformed into 

where 

A:;:: =aA;;/"/a':, Ba'b = aBa/a4 etc 
A w v ;  a ;  @ - A &U: U :  0 + A N " :  O L ;  0 abed- ab c d ad c b 

n AZ;:r=AZ;:b";r+AZr:b";cy 

a , b , c , d = 1 , 2 , .  ..,n CL, v, a, P = 0, 1,293. 

The existence of 2 will be ensured by imposing the above conditions on E which yields 
(using equation ( 3 ) )  

( 9 a )  

(96 1 
hacAzl  = ha,"," = h:AIg 

(hadA2r)'6 + (hbdAd,):: = (hbdA2:)': 
n 

where 

a , b , c , d , e = 1 , 2  , . . . ,  n CL, U9 a, P = 0 ,192 ,3 .  

3. Theorem (equation (5)) 

Equation ( 9 d )  can be transformed into 

Using @a), (86), ( 9 a )  and (961, the last term in equation (10 )  can be written as 
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By using equation (7) in equation ( l l ) ,  we have 

The use of this result in (10) yields 

On the other hand, from equations ( 8 d )  and (7), we get 

2 d(A:;:bY)/dX" =-A:: a4c;av/a4b;, -A;: a4c;av/a4ai,. (13) 

By substituting (13) into (12), we have 

Equation (14) may be particularised by putting A:; = g'"Aab (which reproduces 
equation (4)): 

Let us introduce a matrix A such that 

AcbA bf = 6:. 

By multiplying equation (15) by this matrix A, we have 

It is easy to see from equation (16) that 

d(haa jldx" = 0 a = 1 , 2 , .  . . , n /A = 0, 1,2, 3. 

Thus statement ( 5 )  is proved. 
A further generalisation of the previous result is achieved if 

A:; = cw'"Dab 

where C and D are symmetric matrices, and D is non-singular. 
Under such a hypothesis, we have 

(d/dx ")(h,")C"" = 0 v , p = 0 , 1 , 2 , 3 .  

If C is a diagonal matrix g, we have again equation ( 5 ) .  
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4. Conclusions 

Our result has an important and obvious application. The solution of the equivalence 
problem in its full generality implies obtaining h by solving the set of equations 
( 9 a ) - ( 9 e )  taking into account equations ( 8 u ) - ( S e )  and (7). This, obviously, is an 
enormous task. However, if our result is used a great simplification is achieved since 
it allows a convenient ansatz for the form of h, as will be clarified by the following 
examples. 

As a first example let us consider the equation for the damped vibration of a string 
2 2 ‘  F1 =(a2&at2)-c  (a 4 / a x 2 ) - 2 k ( a & d f ) = 0  

F2 = (a2c$/at2) - C2(a24/ax 2 ,  + 2k (&$/at)  = 0. 

The Lagrangian density is 

9 = (a&/at)@$/at) + k [ 4 ( a J / a t )  -d;(a4/at)]-c2(a~/ax)(a4/ax). 
A particular solution for h is 

= [A e-2kt A 1 e2kl 
where A is a numerical constant. The equivalent Lagrangian density is 

2 = +A e2kt[(ar$/at)2 - c 2(aq5/ax)2] ++A e-2kr - c 2(a&ax)2] 

+ [ ( a m t ) ( a $ / a t )  -c2(a41ax)(a&ax)l + k [ 4  @&/at) - &a4/at)l. 
As a second example, consider the Lagrangian density 

L = S(X + t ) [ (a4 /ax ) (a4 /ax )  - (a4/at)(a4/at)]  

+[ (ad lax )  - (a4 /a t ) l4  ++4[(a&ax) - (a&/a f ) l -+(&)2 .  
A particular solution for this problem is 

h = [  O ]  
B ( x + t )  1 

where B is a numerical constant. The corresponding equivalent Lagrangian density 
is easily obtained: 
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